Mendelian inheritance (Pedigrees)
Genetic conditions caused by a mutation in a single gene follow predictable patterns of inheritance within families. Single gene inheritance is also referred to as Mendelian inheritance as they follow transmission patterns he observed in his research on peas. There are four types of Mendelian inheritance patterns:
Autosomal dominant
Dominant conditions are expressed in individuals who have just one copy of the mutant allele. The pedigree below illustrates the transmission of an autosomal dominant trait. Affected males and females have an equal probability of passing on the trait to offspring. Affected individual's have one normal copy of the gene and one mutant copy of the gene, thus each offspring has a 50% chance on inheriting the mutant allele. As shown in this pedigree, approximately half of the children of affected parents inherit the condition and half do not.
Autosomal Recessive
Recessive conditions are clinically manifest only when an individual has two copies of the mutant allele. When just one copy of the mutant allele is present, an individual is a carrier of the mutation, but does not develop the condition. Females and males are affected equally by traits transmitted by autosomal recessive inheritance. When two carriers mate, each child has a 25% chance of being homozygous wild-type (unaffected); a 25% chance of being homozygous mutant (affected); or a 50% chance of being heterozygous (unaffected carrier).
X-linked Recessive
X-linked recessive traits are not clinically manifest when there is a normal copy of the gene. All X-linked recessive traits are fully evident in males because they only have one copy of the X chromosome, thus do not have a normal copy of the gene to compensate for the mutant copy. For that same reason, women are rarely affected by X-linked recessive diseases, however they are affected when they have two copies of the mutant allele. Because the gene is on the X chromosome there is no father to son transmission, but there is father to daughter and mother to daughter and son transmission. If a man is affected with an X-linked recessive condition, all his daughters will inherit one copy of the mutant allele from him.
X-linked Dominant
Because the gene is located on the X chromosome, there is no transmission from father to son, but there can be transmission from father to daughter (all daughters of an affected male will be affected since the father has only one X chromosome to transmit). Children of an affected woman have a 50% chance of inheriting the X chromosome with the mutant allele. X-linked dominant disorders are clinically manifest when only one copy of the mutant allele is present.
- Autosomal dominant
- Autosomal recessive
- X-linked recessive
- X-linked dominant
Autosomal dominant
Dominant conditions are expressed in individuals who have just one copy of the mutant allele. The pedigree below illustrates the transmission of an autosomal dominant trait. Affected males and females have an equal probability of passing on the trait to offspring. Affected individual's have one normal copy of the gene and one mutant copy of the gene, thus each offspring has a 50% chance on inheriting the mutant allele. As shown in this pedigree, approximately half of the children of affected parents inherit the condition and half do not.
![]() | |
Autosomal Recessive
Recessive conditions are clinically manifest only when an individual has two copies of the mutant allele. When just one copy of the mutant allele is present, an individual is a carrier of the mutation, but does not develop the condition. Females and males are affected equally by traits transmitted by autosomal recessive inheritance. When two carriers mate, each child has a 25% chance of being homozygous wild-type (unaffected); a 25% chance of being homozygous mutant (affected); or a 50% chance of being heterozygous (unaffected carrier).
![]() | |
X-linked Recessive
X-linked recessive traits are not clinically manifest when there is a normal copy of the gene. All X-linked recessive traits are fully evident in males because they only have one copy of the X chromosome, thus do not have a normal copy of the gene to compensate for the mutant copy. For that same reason, women are rarely affected by X-linked recessive diseases, however they are affected when they have two copies of the mutant allele. Because the gene is on the X chromosome there is no father to son transmission, but there is father to daughter and mother to daughter and son transmission. If a man is affected with an X-linked recessive condition, all his daughters will inherit one copy of the mutant allele from him.
![]() | |
X-linked Dominant
Because the gene is located on the X chromosome, there is no transmission from father to son, but there can be transmission from father to daughter (all daughters of an affected male will be affected since the father has only one X chromosome to transmit). Children of an affected woman have a 50% chance of inheriting the X chromosome with the mutant allele. X-linked dominant disorders are clinically manifest when only one copy of the mutant allele is present.
![]() | |